A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Counting bordered and primitive words with a fixed weight
Tekijät: Harju T, Nowotka D
Kustantaja: ELSEVIER SCIENCE BV
Julkaisuvuosi: 2005
Lehti:: Theoretical Computer Science
Tietokannassa oleva lehden nimi: THEORETICAL COMPUTER SCIENCE
Lehden akronyymi: THEOR COMPUT SCI
Vuosikerta: 340
Numero: 2
Aloitussivu: 273
Lopetussivu: 279
Sivujen määrä: 7
ISSN: 0304-3975
DOI: https://doi.org/10.1016/j.tcs.2005.03.040
Tiivistelmä
A word w is primitive if it is not a proper power of another word, and w is unbordered if it has no prefix that is also a suffix of w. We study the number of primitive and unbordered words w with a fixed weight, that is, words for which the Parikh vector of w is a fixed vector. Moreover, we estimate the number of words that have a unique border. (c) 2005 Elsevier B.V All rights reserved.
A word w is primitive if it is not a proper power of another word, and w is unbordered if it has no prefix that is also a suffix of w. We study the number of primitive and unbordered words w with a fixed weight, that is, words for which the Parikh vector of w is a fixed vector. Moreover, we estimate the number of words that have a unique border. (c) 2005 Elsevier B.V All rights reserved.