A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
A note on short palindromes in square-free words
Tekijät: Tero Harju, Mike Müller
Kustantaja: ELSEVIER SCIENCE BV
Julkaisuvuosi: 2015
Journal: Theoretical Computer Science
Tietokannassa oleva lehden nimi: THEORETICAL COMPUTER SCIENCE
Lehden akronyymi: THEOR COMPUT SCI
Vuosikerta: 562
Aloitussivu: 658
Lopetussivu: 659
Sivujen määrä: 2
ISSN: 0304-3975
DOI: https://doi.org/10.1016/j.tcs.2014.10.040
A set A subset of N is called sparse if, for some No, the distance between any two elements of A is at least N-0. James Currie (2008) [2] showed that for each sparse set A and every subset P subset of A there exists a ternary square-free word w(P) such that a palindrome of length three starts at position i is an element of A in w(P) if and only if i is an element of P. We provide a simpler proof of this result that also works for shorter distances between the positions.