A1 Journal article – refereed

(68)Ga-DOTA-Siglec-9 PET/CT imaging of peri-implant tissue responses and staphylococcal infections




List of Authors: Ahtinen H, Kulkova J, Lindholm L, Eerola E, Hakanen AJ, Moritz N, Söderström M, Saanijoki T, Jalkanen S, Roivainen A, Aro HT

Publication year: 2014

Journal: EJNMMI Research

Volume number: 4

Number of pages: 11

ISSN: 2191-219X

DOI: http://dx.doi.org/10.1186/s13550-014-0045-3


Abstract


Background

Staphylococcus epidermidis (S. epidermidis) has emerged as one of the leading pathogens of biomaterial-related infections. Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial molecule controlling extravasation of leukocytes. Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a leukocyte ligand of VAP-1. We hypothesized that 68Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated Siglec-9 motif containing peptide (68Ga-DOTA-Siglec-9) could detect inflammatory response due to S. epidermidis peri-implant infection by positron emission tomography (PET).



Methods

Thirty Sprague-Dawley rats were randomized into three groups. A sterile catheter was implanted into the medullary canal of the left tibia. In groups 1 and 2, the implantation was followed by peri-implant injection of S. epidermidis or Staphylococcus aureus (S. aureus) with adjunct injections of aqueous sodium morrhuate. In group 3, sterile saline was injected instead of bacteria and no aqueous sodium morrhuate was used. At 2 weeks after operation, 68Ga-DOTA-Siglec-9 PET coupled with computed tomography (CT) was performed with the measurement of the standardized uptake value (SUV). The presence of the implant-related infection was verified by microbiological analysis, imaging with fluorescence microscope, and histology. The in vivo PET results were verified by ex vivo measurements by gamma counter.



Results

In group 3, the tibias with implanted sterile catheters showed an increased local uptake of 68Ga-DOTA-Siglec-9 compared with the intact contralateral bones (SUVratio +29.5%). 68Ga-DOTA-Siglec-9 PET detected inflammation induced by S. epidermidis and S. aureus catheter-related bone infections (SUVratio +58.1% and +41.7%, respectively). The tracer uptake was significantly higher in the S. epidermidis group than in group 3 without bacterial inoculation, but the difference between S. epidermidis and S. aureus groups was not statistically significant. The difference between the S. aureus group and group 3 was neither statistically significant.



Conclusion

PET/CT imaging with novel 68Ga-DOTA-Siglec-9 tracer was able to detect inflammatory tissue response induced by catheter implantation and staphylococcal infections.





Last updated on 2021-24-06 at 08:43