A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On the subinvariance of uniform domains in Banach spaces
Tekijät: Huang M, Vuorinen M, Wang X
Kustantaja: ACADEMIC PRESS INC ELSEVIER SCIENCE
Julkaisuvuosi: 2013
Journal: Journal of Mathematical Analysis and Applications
Tietokannassa oleva lehden nimi: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Lehden akronyymi: J MATH ANAL APPL
Numero sarjassa: 2
Vuosikerta: 407
Numero: 2
Aloitussivu: 527
Lopetussivu: 540
Sivujen määrä: 14
ISSN: 0022-247X
DOI: https://doi.org/10.1016/j.jmaa.2013.05.046
Tiivistelmä
Suppose that E and E' denote real Banach spaces with dimension at least 2, that D subset of E and D' subset of E' are domains, and that f : D -> D' is a homeomorphism. In this paper, we prove the following subinvariance property for the class of uniform domains: suppose that f is a freely quasiconformal mapping and that D' is uniform. Then the image f (D-1) of every uniform subdomain D-1 in D under f is still uniform. This result answers an open problem of Vaisala in the affirmative. (C) 2013 Elsevier Inc. All rights reserved.
Suppose that E and E' denote real Banach spaces with dimension at least 2, that D subset of E and D' subset of E' are domains, and that f : D -> D' is a homeomorphism. In this paper, we prove the following subinvariance property for the class of uniform domains: suppose that f is a freely quasiconformal mapping and that D' is uniform. Then the image f (D-1) of every uniform subdomain D-1 in D under f is still uniform. This result answers an open problem of Vaisala in the affirmative. (C) 2013 Elsevier Inc. All rights reserved.