A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Gaussian mixture model-based segmentation of MR images taken from premature infant brains




TekijätMerisaari H, Parkkola R, Alhoniemi E, Teras M, Lehtonen L, Haataja L, Lapinleimu H, Nevalainen OS

KustantajaELSEVIER SCIENCE BV

Julkaisuvuosi2009

JournalJournal of Neuroscience Methods

Tietokannassa oleva lehden nimiJOURNAL OF NEUROSCIENCE METHODS

Lehden akronyymiJ NEUROSCI METH

Vuosikerta182

Numero1

Aloitussivu110

Lopetussivu122

Sivujen määrä13

ISSN0165-0270

DOIhttps://doi.org/10.1016/j.jneumeth.2009.05.026


Tiivistelmä
Segmentation of Magnetic Resonance multi-layer images of premature infant brain has additional challenges in comparison to normal adult brain segmentation. Images of premature infants contain lower signal to noise ratio due to shorter scanning times. Further, anatomic structure include still greater variations which can impair the accuracy of standard brain models. A fully automatic brain segmentation method for T1-weighted images is proposed in present paper. The method uses watershed segmentation with Gaussian mixture model clustering for segmenting cerebrospinal fluid from brain matter and other head tissues. The effect of the myelination process is considered by utilizing information from T2-weighted images. The performance of the new method is compared voxel-by-voxel to the corresponding expert segmentation. The proposed method is found to produce more uniform results in comparison to three accustomary segmentation methods originally developed for adults. This is the case in particular when anatomic forms are still under development and differ in their form from those of adults. (C) 2009 Elsevier B.V. All rights reserved.



Last updated on 2024-26-11 at 18:52