Vertaisarvioitu alkuperäisartikkeli tai data-artikkeli tieteellisessä aikakauslehdessä (A1)

Tensorial blind source separation for improved analysis of multi-omic data




Julkaisun tekijätTeschendorff AE, Jing H, Paul DS, Virta J, Nordhausen K

KustantajaBIOMED CENTRAL LTD

Julkaisuvuosi2018

JournalGenome Biology

Tietokannassa oleva lehden nimiGENOME BIOLOGY

Lehden akronyymiGENOME BIOL

Volyymi19

Sivujen määrä18

ISSN1474-760X

DOIhttp://dx.doi.org/10.1186/s13059-018-1455-8

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/32116144


Tiivistelmä
There is an increased need for integrative analyses of multi-omic data. We present and benchmark a novel tensorial independent component analysis (tICA) algorithm against current state-of-the-art methods. We find that tICA outperforms competing methods in identifying biological sources of data variation at a reduced computational cost. On epigenetic data, tICA can identify methylation quantitative trait loci at high sensitivity. In the cancer context, tICA identifies gene modules whose expression variation across tumours is driven by copy-number or DNA methylation changes, but whose deregulation relative to normal tissue is independent of such alterations, a result we validate by direct analysis of individual data types.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2022-07-04 at 16:56