Vertaisarvioitu artikkeli konferenssijulkaisussa (A4)
On the number of signals in multivariate time series
Julkaisun tekijät: Markus Matilainen, Klaus Nordhausen, Joni Virta
Konferenssin vakiintunut nimi: International Conference on Latent Variable Analysis and Signal Separation
Kustantaja: Springer Verlag
Julkaisuvuosi: 2018
Journal: Lecture Notes in Computer Science
Kirjan nimi *: Latent Variable Analysis and Signal Separation
Tietokannassa oleva lehden nimi: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Sarjan nimi: Lecture Notes in Computer Science
Volyymi: 10891
Aloitussivu: 248
Lopetussivun numero: 258
ISBN: 978-3-319-93763-2
eISBN: 978-3-319-93764-9
ISSN: 0302-9743
DOI: http://dx.doi.org/10.1007/978-3-319-93764-9_24
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/32083520
We assume a second-order source separation model where the observed
multivariate time series is a linear mixture of latent, temporally
uncorrelated time series with some components pure white noise. To avoid
the modelling of noise, we extract the non-noise latent components
using some standard method, allowing the modelling of the extracted
univariate time series individually. An important question is the
determination of which of the latent components are of interest in
modelling and which can be considered as noise. Bootstrap-based methods
have recently been used in determining the latent dimension in various
methods of unsupervised and supervised dimension reduction and we
propose a set of similar estimation strategies for second-order
stationary time series. Simulation studies and a sound wave example are
used to show the method’s effectiveness.
Ladattava julkaisu This is an electronic reprint of the original article. |