Vertaisarvioitu artikkeli konferenssijulkaisussa (A4)

On the number of signals in multivariate time series




Julkaisun tekijätMarkus Matilainen, Klaus Nordhausen, Joni Virta

Konferenssin vakiintunut nimiInternational Conference on Latent Variable Analysis and Signal Separation

KustantajaSpringer Verlag

Julkaisuvuosi2018

JournalLecture Notes in Computer Science

Kirjan nimi *Latent Variable Analysis and Signal Separation

Tietokannassa oleva lehden nimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Sarjan nimiLecture Notes in Computer Science

Volyymi10891

Aloitussivu248

Lopetussivun numero258

ISBN978-3-319-93763-2

eISBN978-3-319-93764-9

ISSN0302-9743

DOIhttp://dx.doi.org/10.1007/978-3-319-93764-9_24

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/32083520


Tiivistelmä

We assume a second-order source separation model where the observed
multivariate time series is a linear mixture of latent, temporally
uncorrelated time series with some components pure white noise. To avoid
the modelling of noise, we extract the non-noise latent components
using some standard method, allowing the modelling of the extracted
univariate time series individually. An important question is the
determination of which of the latent components are of interest in
modelling and which can be considered as noise. Bootstrap-based methods
have recently been used in determining the latent dimension in various
methods of unsupervised and supervised dimension reduction and we
propose a set of similar estimation strategies for second-order
stationary time series. Simulation studies and a sound wave example are
used to show the method’s effectiveness.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2022-07-04 at 16:55