A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Visual World Paradigm Data: From Preprocessing to Nonlinear Time-Course Analysis




TekijätPorretta V, Kyröläinen AJ, van Rij J, Järvikivi J

Konferenssin vakiintunut nimiInternational Conference on Intelligent Decision Technologies

KustantajaSPRINGER-VERLAG NEW YORK, MS INGRID CUNNINGHAM, 175 FIFTH AVE, NEW YORK, NY 10010 USA

Julkaisuvuosi2018

Kokoomateoksen nimiINTELLIGENT DECISION TECHNOLOGIES 2017, KES-IDT 2017, PT II

Tietokannassa oleva lehden nimiINTELLIGENT DECISION TECHNOLOGIES 2017, KES-IDT 2017, PT II

Lehden akronyymiSMART INNOV SYST TEC

Sarjan nimiSmart Innovation, Systems and Technologies

Vuosikerta73

Aloitussivu268

Lopetussivu277

Sivujen määrä10

ISBN978-3-319-59423-1

eISBN978-3-319-59424-8

ISSN2190-3018

DOIhttps://doi.org/10.1007/978-3-319-59424-8_25


Tiivistelmä
The Visual World Paradigm (VWP) is used to study online spoken language processing and produces time-series data. The data present challenges for analysis and they require significant preprocessing and are by nature nonlinear. Here, we discuss VWPre, a new tool for data preprocessing, and generalized additive mixed modeling (GAMM), a relatively new approach for nonlinear time-series analysis (using mgcv and itsadug), which are all available in R. An example application of GAMM using preprocessed data is provided to illustrate its advantages in addressing the issues inherent to other methods, allowing researchers to more fully understand and interpret VWP data.



Last updated on 2024-26-11 at 12:01