A4 Refereed article in a conference publication

Balmer-dominated shocks in Tycho's SNR: Omnipresence of CRs




AuthorsSladjana Knežević, Ronald Läsker, Glenn van de Ven, Joan Font, John C. Raymond, Coryn A. L. Bailer-Jones, John Beckman, Giovanni Morlino, Parviz Ghavamian, John P. Hughes, Kevin Heng

EditorsAlexandre Marcowith, Matthieu Renaud, Gloria Dubner, Alak Ray, Andrei Bykov

Conference nameSymposium of the International Astronomical Union

PublisherCambridge University Press

Publication year2017

JournalProceedings of the International Astronomical Union

Book title Supernova 1987A: 30 Years Later

Journal name in sourceProceedings of the International Astronomical Union

Volume12

IssueS331

First page 248

Last page253

Number of pages6

ISSN1743-9213

eISSN1743-9221

DOIhttps://doi.org/10.1017/S1743921317004550


Abstract

We present wide-field, spatially and highly resolved spectroscopic
observations of Balmer filaments in the northeastern rim of Tycho's
supernova remnant in order to investigate the signal of cosmic-ray (CR)
acceleration. The spectra of Balmer-dominated shocks (BDSs) have
characteristic narrow (FWHM ∼ 10 km s-1) and broad (FWHM ∼ 1000 km s-1)
Hα components. CRs affect the Hα-line parameters: heating the cold
neutrals in the interstellar medium results in broadening of the narrow
Hα-line width beyond 20 km s-1, but also in reduction of the
broad Hα-line width due to energy being removed from the protons in the
post-shock region. For the first time we show that the width of the
narrow Hα line, much larger than 20 km s-1, is not a resolution or geometric effect nor a spurious result of a neglected intermediate (FWHM ∼ 100 km s-1)
component resulting from hydrogen atoms undergoing charge exchange with
warm protons in the broad-neutral precursor. Moreover, we show that a
narrow line width 20 km s-1 extends across the entire NE rim,
implying CR acceleration is ubiquitous, and making it possible to
relate its strength to locally varying shock conditions. Finally, we
find several locations along the rim, where spectra are significantly
better explained (based on Bayesian evidence) by inclusion of the
intermediate component, with a width of 180 km s-1 on average.



Last updated on 2024-26-11 at 22:54