A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Weighted codes in Lee metrics




TekijätDorbec P, Gravier S, Honkala I, Mollard M

KustantajaSPRINGER

Julkaisuvuosi2009

JournalDesigns, Codes and Cryptography

Tietokannassa oleva lehden nimiDESIGNS CODES AND CRYPTOGRAPHY

Lehden akronyymiDESIGN CODE CRYPTOGR

Vuosikerta52

Numero2

Aloitussivu209

Lopetussivu218

Sivujen määrä10

ISSN0925-1022

DOIhttps://doi.org/10.1007/s10623-009-9277-z


Tiivistelmä
Perfect weighted coverings of radius one have been often studied in the Hamming metric. In this paper, we study these codes in the Lee metric. To simplify the notation, we use a slightly different description, yet equivalent. Given two integers a and b, an (a, b)-code is a set of vertices such that vertices in the code have a neighbours in the code and other vertices have b neighbours in the code. An (a, b)-code is exactly a perfect weighted covering of radius one with weight (b-a/b, 1/b). In this paper, we prove results of existence as well as of non-existence for (a, b)-codes on the multidimensional grid graphs.


Research Areas



Last updated on 2024-26-11 at 19:29