A1 Refereed original research article in a scientific journal
Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats
Authors: Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Makila E, Laaksonen T, Peltonen L, Lehto VP, Hirvonen J, Salonen J
Publisher: AMER CHEMICAL SOC
Publication year: 2010
Journal: ACS Nano
Journal name in source: ACS NANO
Journal acronym: ACS NANO
Number in series: 6
Volume: 4
Issue: 6
First page : 3023
Last page: 3032
Number of pages: 10
ISSN: 1936-0851
DOI: https://doi.org/10.1021/nn901657w
Abstract
Porous silicon (PSI) particles have been studied for the effects they elicit in Caco-2 and RAW 264.7 macrophage cells in terms of toxicity, oxidative stress, and inflammatory response. The most suitable particles were then functionalized with a novel (18)F label to assess their biodistribution after enteral and parenteral administration in a rat model. The results show that thermally hydrocarbonized porous silicon (THCPSi) nanoparticles did not induce any significant toxicity, oxidative stress, or inflammatory response in Caco-2 and RAW 264.7 macrophage cells. Fluorescently labeled nanoparticles were associated with the cells surface but were not extensively internalized. Biodistribution studies in rats using novel (18)F-labeled THCPSi nanoparticles demonstrated that the particles passed intact through the gastrointestinal tract after oral administration and were also not absorbed from a subcutaneous deposit. After intravenous administration, the particles were found mainly in the liver and spleen, indicating rapid removal from the circulation. Overall, these silicon-based nanosystems exhibit excellent in vivo stability, low cytotoxicity, and nonimmunogenic profiles, ideal for oral drug delivery purposes.
Porous silicon (PSI) particles have been studied for the effects they elicit in Caco-2 and RAW 264.7 macrophage cells in terms of toxicity, oxidative stress, and inflammatory response. The most suitable particles were then functionalized with a novel (18)F label to assess their biodistribution after enteral and parenteral administration in a rat model. The results show that thermally hydrocarbonized porous silicon (THCPSi) nanoparticles did not induce any significant toxicity, oxidative stress, or inflammatory response in Caco-2 and RAW 264.7 macrophage cells. Fluorescently labeled nanoparticles were associated with the cells surface but were not extensively internalized. Biodistribution studies in rats using novel (18)F-labeled THCPSi nanoparticles demonstrated that the particles passed intact through the gastrointestinal tract after oral administration and were also not absorbed from a subcutaneous deposit. After intravenous administration, the particles were found mainly in the liver and spleen, indicating rapid removal from the circulation. Overall, these silicon-based nanosystems exhibit excellent in vivo stability, low cytotoxicity, and nonimmunogenic profiles, ideal for oral drug delivery purposes.