A1 Refereed original research article in a scientific journal
Optimization of the etch-and-rinse technique: New perspectives to improve resin–dentin bonding and hybrid layer integrity by reducing residual water using dimethyl sulfoxide pretreatments
Authors: Thiago Henrique Scarabello Stape, Leo Tjäderhane, Gabriel Abuna, Mário Alexandre Coelho Sinhoreti, Luís Roberto Marcondes Martins, Arzu Tezvergil-Mutluay
Publisher: Elsevier Inc.
Publication year: 2018
Journal: Dental Materials
Journal name in source: Dental Materials
Volume: 34
Issue: 7
First page : 967
Last page: 977
Number of pages: 11
ISSN: 0109-5641
eISSN: 1879-0097
DOI: https://doi.org/10.1016/j.dental.2018.03.010
Objective: To determine whether bonding effectiveness and hybrid layer integrity on acid-etched dehydrated dentin would be comparable to the conventional wet-bonding technique through new dentin biomodification approaches using dimethyl sulfoxide (DMSO).
Methods: Etched dentin surfaces from extracted sound molars were randomly bonded in wet or dry conditions (30 s air drying) with DMSO/ethanol or DMSO/H2O as pretreatments using a simplified (Scotchbond Universal Adhesive, 3M ESPE: SU) and a multi-step (Adper Scotchbond Multi-Purpose, 3M ESPE: SBMP) etch-and-rinse adhesives. Untreated dentin surfaces served as control. Bonded teeth (n = 8) were stored in distilled water for 24 h and sectioned into resin–dentin beams (0.8 mm2) for microtensile bond strength test and quantitative interfacial nanoleakage analysis (n = 8) under SEM. Additional teeth (n = 2) were prepared for micropermeability assessment by CFLSM under simulated pulpar pressure (20 cm H2O) using 5 mM fluorescein as a tracer. Microtensile data was analyzed by 3-way ANOVA followed by Tukey Test and nanoleakage by Kruskal–Wallis and Dunn-Bonferroni multiple comparison test (α = 0.05).
Results: While dry-bonding of SBMP produced significantly lower bond strengths than wet-bonding (p < 0.05), DMSO/H2O and DMSO/ethanol produced significantly higher bond strengths for SBMP irrespective of dentin condition (p < 0.05). SU presented significantly higher nanoleakage levels (p < 0.05) and micropermeability than SBMP. Improvement in hybrid layer integrity occurred for SBMP and SU for both pretreatments, albeit most pronouncedly for DMSO/ethanol regardless of dentin moisture.
Conclusion: DMSO pretreatments may be used as a new suitable strategy to improve bonding of water-based adhesives to demineralized air-dried dentin beyond conventional wet-bonding. Less porous resin–dentin interfaces with higher bond strengths on air-dried etched dentin were achieved; nonetheless, overall efficiency varied according to DMSO’s co-solvent and adhesive type.
Clinical significance: DMSO pretreatments permit etched dentin to be air-dried before hybridization facilitating residual water removal and thus improving bonding effectiveness. This challenges the current paradigm of wet-bonding requirement for the etch-and-rinse approach creating new possibilities to enhance the clinical longevity of resin–dentin interfaces.