A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On robust and dynamic identifying codes
Tekijät: Honkala I, Karpovsky MG, Levitin LB
Kustantaja: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Julkaisuvuosi: 2006
Journal: IEEE Transactions on Information Theory
Tietokannassa oleva lehden nimi: IEEE TRANSACTIONS ON INFORMATION THEORY
Lehden akronyymi: IEEE T INFORM THEORY
Vuosikerta: 52
Numero: 2
Aloitussivu: 599
Lopetussivu: 612
Sivujen määrä: 14
ISSN: 0018-9448
DOI: https://doi.org/10.1109/TIT.2005.862097
Tiivistelmä
A subset C of vertices in an undirected graph G = (V, E) is called a 1-identifying code if the sets I(v) = {u is an element of C : d(u, v) <= 1}, v E V, are nonempty and no two of them are the same set. It is natural to consider classes of codes that retain the identification property under various conditions, e.g., when the sets I(v) are possibly slightly corrupted. We consider two such classes of robust codes. We also consider dynamic identifying codes, i.e., walks in G whose vertices form an identifying code in G.
A subset C of vertices in an undirected graph G = (V, E) is called a 1-identifying code if the sets I(v) = {u is an element of C : d(u, v) <= 1}, v E V, are nonempty and no two of them are the same set. It is natural to consider classes of codes that retain the identification property under various conditions, e.g., when the sets I(v) are possibly slightly corrupted. We consider two such classes of robust codes. We also consider dynamic identifying codes, i.e., walks in G whose vertices form an identifying code in G.