A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On robust and dynamic identifying codes




TekijätHonkala I, Karpovsky MG, Levitin LB

KustantajaIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Julkaisuvuosi2006

JournalIEEE Transactions on Information Theory

Tietokannassa oleva lehden nimiIEEE TRANSACTIONS ON INFORMATION THEORY

Lehden akronyymiIEEE T INFORM THEORY

Vuosikerta52

Numero2

Aloitussivu599

Lopetussivu612

Sivujen määrä14

ISSN0018-9448

DOIhttps://doi.org/10.1109/TIT.2005.862097


Tiivistelmä
A subset C of vertices in an undirected graph G = (V, E) is called a 1-identifying code if the sets I(v) = {u is an element of C : d(u, v) <= 1}, v E V, are nonempty and no two of them are the same set. It is natural to consider classes of codes that retain the identification property under various conditions, e.g., when the sets I(v) are possibly slightly corrupted. We consider two such classes of robust codes. We also consider dynamic identifying codes, i.e., walks in G whose vertices form an identifying code in G.


Research Areas



Last updated on 2024-26-11 at 12:49