A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
On Stable and Unstable Limit Sets of Finite Families of Cellular Automata
Tekijät: Ville Salo, Ilkka Törmä
Toimittaja: Adrian-Horia Dediu, Carlos Martín-Vide
Kustannuspaikka: Berlin
Julkaisuvuosi: 2012
Journal: Lecture Notes in Computer Science
Kokoomateoksen nimi: Language and Automata Theory and Applications
Sarjan nimi: Lecture Notes in Computer Science
Vuosikerta: 7183
Aloitussivu: 502
Lopetussivu: 513
ISBN: 978-3-642-28331-4
eISBN: 978-3-642-28332-1
ISSN: 0302-9743
DOI: https://doi.org/10.1007/978-3-642-28332-1_43
Tiivistelmä
In this paper, we define the notion of limit set for a finite family of cellular automata, which is a generalization of the limit set of a single automaton. We prove that the hierarchy formed by increasing the number of automata in the defining set is infinite, and study the boolean closure properties of different classes of limit sets.
In this paper, we define the notion of limit set for a finite family of cellular automata, which is a generalization of the limit set of a single automaton. We prove that the hierarchy formed by increasing the number of automata in the defining set is infinite, and study the boolean closure properties of different classes of limit sets.