A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A THEOREM OF SOLER, THE THEORY OF SYMMETRY AND QUANTUM MECHANICS




TekijätCassinelli G, Lahti P

KustantajaWORLD SCIENTIFIC PUBL CO PTE LTD

Julkaisuvuosi2012

JournalInternational Journal of Geometric Methods in Modern Physics

Tietokannassa oleva lehden nimiINTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS

Lehden akronyymiINT J GEOM METHODS M

Artikkelin numeroARTN 1260005

Numero sarjassa2

Vuosikerta9

Numero2

Sivujen määrä7

ISSN0219-8878

DOIhttps://doi.org/10.1142/S0219887812600055


Tiivistelmä
A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron-McLaren type. Our aim is to show how a theorem of M. Soler [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra 23 (1995) 219-243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron-McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Soler's theorem in order to obtain a Hilbert space solution for the coordinatization problem.



Last updated on 2024-26-11 at 14:38