A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
A THEOREM OF SOLER, THE THEORY OF SYMMETRY AND QUANTUM MECHANICS
Tekijät: Cassinelli G, Lahti P
Kustantaja: WORLD SCIENTIFIC PUBL CO PTE LTD
Julkaisuvuosi: 2012
Journal: International Journal of Geometric Methods in Modern Physics
Tietokannassa oleva lehden nimi: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS
Lehden akronyymi: INT J GEOM METHODS M
Artikkelin numero: ARTN 1260005
Numero sarjassa: 2
Vuosikerta: 9
Numero: 2
Sivujen määrä: 7
ISSN: 0219-8878
DOI: https://doi.org/10.1142/S0219887812600055
Tiivistelmä
A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron-McLaren type. Our aim is to show how a theorem of M. Soler [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra 23 (1995) 219-243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron-McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Soler's theorem in order to obtain a Hilbert space solution for the coordinatization problem.
A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron-McLaren type. Our aim is to show how a theorem of M. Soler [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra 23 (1995) 219-243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron-McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Soler's theorem in order to obtain a Hilbert space solution for the coordinatization problem.