A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Sign changes of Hecke eigenvalues
Tekijät: Kaisa Matomäki, Maksym Radziwiłł
Kustantaja: SPRINGER BASEL AG
Julkaisuvuosi: 2015
Journal: Geometric And Functional Analysis
Tietokannassa oleva lehden nimi: GEOMETRIC AND FUNCTIONAL ANALYSIS
Lehden akronyymi: GEOM FUNCT ANAL
Vuosikerta: 25
Numero: 6
Aloitussivu: 1937
Lopetussivu: 1955
Sivujen määrä: 19
ISSN: 1016-443X
DOI: https://doi.org/10.1007/s00039-015-0350-7
Let f be a holomorphic or Maass Hecke cusp form for the full modular group and write for the corresponding Hecke eigenvalues. We are interested in the signs of those eigenvalues. In the holomorphic case, we show that for some positive constant and every large enough x, the sequence has at least sign changes. Furthermore we show that half of non-zero are positive and half are negative. In the Maass case, it is not yet known that the coefficients are non-lacunary, but our method is robust enough to show that on the relative set of non-zero coefficients there is a positive proportion of sign changes. In both cases previous lower bounds for the number of sign changes were of the form x (delta) for some delta < 1.
Ladattava julkaisu This is an electronic reprint of the original article. |