A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
The equation x(i)=y(j)z(k) in a free semigroup
Tekijät: Harju T, Nowotka D
Kustantaja: SPRINGER-VERLAG
Julkaisuvuosi: 2004
Lehti:: Semigroup Forum
Tietokannassa oleva lehden nimi: SEMIGROUP FORUM
Lehden akronyymi: SEMIGROUP FORUM
Vuosikerta: 68
Numero: 3
Aloitussivu: 488
Lopetussivu: 490
Sivujen määrä: 3
ISSN: 0037-1912
DOI: https://doi.org/10.1007/s00233-003-0028-6
Tiivistelmä
The equation x(i) = y(j)z(k) has only periodic solutions in a free semigroup. This result was first proven by Lyndon and Schutzenberger. We present a very short proof of this classical result. Moreover, we establish that the power of two or more of a primitive word cannot be factorized into conjugates of a different word.
The equation x(i) = y(j)z(k) has only periodic solutions in a free semigroup. This result was first proven by Lyndon and Schutzenberger. We present a very short proof of this classical result. Moreover, we establish that the power of two or more of a primitive word cannot be factorized into conjugates of a different word.