USF1 deficiency activates brown adipose tissue and improves cardiometabolic health




Laurila PP, Soronen J, Kooijman S, Forsstrom S, Boon MR, Surakka I, Kaiharju E, Coomans CP, Van den Berg SAA, Autio A, Sarin AP, Kettunen J, Tikkanen E, Manninen T, Metso J, Silvennoinen R, Merikanto K, Ruuth M, Perttila J, Makela A, Isomi A, Tuomainen AM, Tikka A, Ramadan UA, Seppala I, Lehtimaki T, Erilcsson J, Havulinna A, Jula A, Karhunen PJ, Salomaa V, Perola M, Ehnholm C, Lee-Rueckert M, Van Eck M, Roivainen A, Taskinen MR, Peltonen L, Mervaala E, Jalanko A, Hohtola E, Olkkonen VM, Ripatti S, Kovanen PT, Rensen PCN, Suomalainen A, Jauhiainenit M

PublisherAMER ASSOC ADVANCEMENT SCIENCE

Yhdysvallat

2016

Science Translational Medicine

SCIENCE TRANSLATIONAL MEDICINE

SCI TRANSL MED

ARTN 323ra13

8

323

19

1946-6234

DOIhttps://doi.org/10.1126/scitranslmed.aad0015



USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease.




Last updated on 2024-26-11 at 19:54