A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

UNIQUE DECIPHERABILITY IN THE ADDITIVE MONOID OF SETS OF NUMBERS




TekijätSaarela A

KustantajaCAMBRIDGE UNIV PRESS

Julkaisuvuosi2011

JournalRAIRO: Informatique Théorique et Applications / RAIRO: Theoretical Informatics and Applications

Tietokannassa oleva lehden nimiRAIRO-THEORETICAL INFORMATICS AND APPLICATIONS

Lehden akronyymiRAIRO-THEOR INF APPL

Numero sarjassa2

Vuosikerta45

Numero2

Aloitussivu225

Lopetussivu234

Sivujen määrä10

ISSN0988-3754

DOIhttps://doi.org/10.1051/ita/2011018


Tiivistelmä
Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a vertical bar b for all a is an element of A and b is an element of B. We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.



Last updated on 2024-26-11 at 23:22