A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Reversibility of computations in graph-walking automata




TekijätMichal Kunc, Alexander Okhotin

ToimittajaKrishnendu Chatterjee, Jirí Sgall

Julkaisuvuosi2013

JournalLecture Notes in Computer Science

Kokoomateoksen nimiMathematical Foundations of Computer Science

Sarjan nimiLecture Notes in Computer Science

Vuosikerta8087

Aloitussivu595

Lopetussivu606

Sivujen määrä12

ISBN978-3-642-40312-5

eISBN978-3-642-40313-2

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-642-40313-2_53


Tiivistelmä
The paper proposes a general notation for deterministic automata traversing finite undirected structures: the graph-walking automata. This abstract notion covers such models as two-way finite automata, including their multi-tape and multi-head variants, tree-walking automata and their extension with pebbles, picture-walking automata, space-bounded Turing machines, etc. It is then demonstrated that every graph-walking automaton can be transformed to an equivalent reversible graph-walking automaton, so that every step of its computation is logically reversible. This is done with a linear blow-up in the number of states, where the linear factor depends on the degree of graphs being traversed. The construction directly applies to all basic models covered by this abstract notion.



Last updated on 2024-26-11 at 19:58