A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Training linear ranking SVMs in linearithmic time using red-black trees




TekijätAntti Airola, Tapio Pahikkala, Tapio Salakoski

KustantajaELSEVIER SCIENCE BV

Julkaisuvuosi2011

JournalPattern Recognition Letters

Tietokannassa oleva lehden nimiPATTERN RECOGNITION LETTERS

Lehden akronyymiPATTERN RECOGN LETT

Numero sarjassa11

Vuosikerta32

Numero9

Aloitussivu1328

Lopetussivu1336

Sivujen määrä9

ISSN0167-8655

DOIhttps://doi.org/10.1016/j.patrec.2011.03.014


Tiivistelmä

We introduce an efficient method for training the linear ranking support vector machine. The method combines cutting plane optimization with red-black tree based approach to subgradient calculations, and has O(ms + mlog (m)) time complexity, where m is the number of training examples, and s the average number of non-zero features per example. Best previously known training algorithms achieve the same efficiency only for restricted special cases, whereas the proposed approach allows any real valued utility scores in the training data. Experiments demonstrate the superior scalability of the proposed approach, when compared to the fastest existing RankSVM implementations.




Last updated on 2024-26-11 at 15:24