A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On codes identifying vertices in the two-dimensional square lattice with diagonals
Tekijät: Cohen GD, Honkala I, Lobstein A, Zemor G
Kustantaja: IEEE COMPUTER SOC
Julkaisuvuosi: 2001
Journal: IEEE Transactions on Computers
Tietokannassa oleva lehden nimi: IEEE TRANSACTIONS ON COMPUTERS
Lehden akronyymi: IEEE T COMPUT
Vuosikerta: 50
Numero: 2
Aloitussivu: 174
Lopetussivu: 176
Sivujen määrä: 3
ISSN: 0018-9340
DOI: https://doi.org/10.1109/12.908992
Tiivistelmä
Fault diagnosis of multiprocessor systems motivates the following graph-theoretic definition. A subset C of points in an undirected graph G = (V, E) is called an identifying code if the sets B(upsilon) boolean AND C consisting of all elements of C within distance one from the vertex upsilon are different. We also require that the sets B(upsilon) boolean AND C are all nonempty. We take G to be the infinite square lattice with diagonals and show that the density of the smallest identifying code is at least 2/9 and at most 4/17.
Fault diagnosis of multiprocessor systems motivates the following graph-theoretic definition. A subset C of points in an undirected graph G = (V, E) is called an identifying code if the sets B(upsilon) boolean AND C consisting of all elements of C within distance one from the vertex upsilon are different. We also require that the sets B(upsilon) boolean AND C are all nonempty. We take G to be the infinite square lattice with diagonals and show that the density of the smallest identifying code is at least 2/9 and at most 4/17.