A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Minimal Duval extensions
Tekijät: Harju T, Nowotka D
Kustantaja: WORLD SCIENTIFIC PUBL CO PTE LTD
Julkaisuvuosi: 2004
Lehti:: International Journal of Foundations of Computer Science
Tietokannassa oleva lehden nimi: INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE
Lehden akronyymi: INT J FOUND COMPUT S
Vuosikerta: 15
Numero: 2
Aloitussivu: 349
Lopetussivu: 354
Sivujen määrä: 6
ISSN: 0129-0541
DOI: https://doi.org/10.1142/S0129054104002467
Tiivistelmä
A word v = wu is a (nontrivial) Duval extension of the unbordered word w, if (u is not a prefix of v and) w is an unbordered factor of v of maximum length. After a short survey of the research topic related to Duval extensions, we show that, if wu is a minimal Duval extension, then u is a factor of w. We also show that finite, unbordered factors of Sturmian words are Lyndon words.
A word v = wu is a (nontrivial) Duval extension of the unbordered word w, if (u is not a prefix of v and) w is an unbordered factor of v of maximum length. After a short survey of the research topic related to Duval extensions, we show that, if wu is a minimal Duval extension, then u is a factor of w. We also show that finite, unbordered factors of Sturmian words are Lyndon words.