A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
A mixed-mode array computing architecture for online dictionary learning
Tekijät: Jussi H. Poikonen, Mika Laiho
Konferenssin vakiintunut nimi: IEEE International Symposium on Circuits and Systems
Kustantaja: Institute of Electrical and Electronics Engineers Inc.
Julkaisuvuosi: 2017
Kokoomateoksen nimi: 2017 IEEE International Symposium on Circuits and Systems (ISCAS)
Tietokannassa oleva lehden nimi: Proceedings - IEEE International Symposium on Circuits and Systems
Aloitussivu: 1
Lopetussivu: 4
Sivujen määrä: 4
ISBN: 978-1-4673-6852-0
ISSN: 0271-4302
DOI: https://doi.org/10.1109/ISCAS.2017.8050589
We recently mapped an algorithm for online learning of linear subspaces
using local learning rules to an analog array computing framework. In
this work we consider a simplified version of this algorithm which can
be realized as a mixed-mode computing array. This allows similar
learning results as the unmodified algorithm and is designed to allow
large-scale test circuit fabrication with commercially available
technologies. We demonstrate by numerical simulations of the mixed mode
learning system that less than ten-bit resolution in the considered
digital circuitry is sufficient for useful learning; such resolution
allows efficient implementation of the related analog computations. The
presented circuit has practical applications e.g. in signal
classification, adaptive compression, and compressive sensing in
low-power devices.