A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Undecidability of infinite post correspondence problem for instances of size 9




TekijätHalava V, Harju T

KustantajaEDP SCIENCES S A

Julkaisuvuosi2006

Lehti:RAIRO: Informatique Théorique et Applications / RAIRO: Theoretical Informatics and Applications

Tietokannassa oleva lehden nimiRAIRO-THEORETICAL INFORMATICS AND APPLICATIONS

Lehden akronyymiRAIRO-THEOR INF APPL

Vuosikerta40

Numero4

Aloitussivu551

Lopetussivu557

Sivujen määrä7

ISSN0988-3754

DOIhttps://doi.org/10.1051/ita:2006039


Tiivistelmä
In the infinite Post Correspondence Problem an instance ( h, g) consists of two morphisms h and g, and the problem is to determine whether or not there exists an infinite word omega such that h(omega) = g(omega). This problem was shown to be undecidable by Ruohonen ( 1985) in general. Recently Blondel and Canterini ( Theory Comput. Syst. 36 ( 2003) 231 - 245) showed that this problem is undecidable for domain alphabets of size 105. Here we give a proof that the infinite Post Correspondence Problem is undecidable for instances where the morphisms have domains of 9 letters. The proof uses a recent result of Matiyasevich and Senizergues and a modification of a result of Claus.


Research Areas



Last updated on 2025-14-10 at 09:55