A1 Refereed original research article in a scientific journal

Short glass fiber-reinforced composite with a semi-interpenetrating polymer network matrix for temporary crowns and bridges.




AuthorsGaroushi SK, Vallittu PK, Lassila LV.

Publication year2008

Journal:Journal of Contemporary Dental Practice


Abstract
AIMS:

The purpose of this study was to investigate the reinforcement effect of short E-glass fiber fillers on some mechanical properties of temporary crown and bridge (TCB) composite resin with a semi-interpenetrating polymer network (semi-IPN).

METHODS AND MATERIALS:

Experimental temporary fiber reinforced (TFC) composite resin was prepared by mixing 15 wt% of short E-glass fibers (3 mm in length) with a 35 wt% of semi-IPN-resin (dual or chemical cure) with 50 wt% of silane treated particulate silica fillers using a high speed mixing device. Temporary crowns (n=6) and test specimens (2 x 2 x 25 mm3) (n=6) were made from the experimental TFC and conventional TCB composite (control, Protemp Garant, 3M-ESPE, St. Paul, MN, USA). A three-point bending test was done according to ISO standard 10477, and a compression loading test was carried out using a steel ball (Ø 3.0 mm) with a speed of 1.0 mm/min until fracture occurred. The degree of monomer conversion (DC%) of both composites was determined by Fourier transfer infrared (FTIR) spectrometry.

RESULTS:

The analysis of variance (ANOVA) revealed both dual and chemical cure experimental TFC composite resins had statistically significant (p<0.05) higher flexural strengths (117 and 99 MPa, respectively) and compressive load-bearing capacity (730 and 623 N, respectively) compared to the control TCB composite resin (72 MPa, 549 N).

CONCLUSION:

The use of short fiber fillers with semi-IPN polymer matrix yielded an improved mechanical performance compared to a conventional TCB composite resin.



Last updated on 2025-14-10 at 10:10