A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors
Tekijät: Penny GM, Cochran RB, Pihlajoki M, Kyrönlahti A, Schrade A, Häkkinen M, Toppari J, Heikinheimo M, Wilson DB
Kustantaja: BioScientifica Ltd.
Julkaisuvuosi: 2017
Journal: Reproduction
Tietokannassa oleva lehden nimi: Reproduction
Vuosikerta: 154
Numero: 4
Aloitussivu: 455
Lopetussivu: 467
Sivujen määrä: 13
ISSN: 1470-1626
eISSN: 1470-1626
DOI: https://doi.org/10.1530/REP-17-0311
Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6, two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4flox/flox; Gata6flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes (Hsd3b1, Cyp17a1 and Hsd17b3) was reduced, whereas expression of another Leydig cell marker, Insl3, was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo. Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.