A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Long binary narrow-sense BCH codes are normal
Tekijät: Honkala I, Kaipainen Y, Tietavainen A
Kustantaja: SPRINGER VERLAG
Julkaisuvuosi: 1997
Journal: Applicable Algebra in Engineering, Communication and Computing
Tietokannassa oleva lehden nimi: APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING
Lehden akronyymi: APPL ALGEBR ENG COMM
Vuosikerta: 8
Numero: 1
Aloitussivu: 49
Lopetussivu: 55
Sivujen määrä: 7
ISSN: 0938-1279
DOI: https://doi.org/10.1007/s002000050052
Tiivistelmä
Let C be the binary narrow-sense BCH code of length n = (2(m) - 1)/h, where m is the order of 2 module n. Using characters of finite fields and a theorem of Well, and results of Vladut-Skorobogatov and Lang-Weil we prove that the code C is normal in the non-primitive case h > 1 if 2(m) greater than or equal to 4(2th)(4t+2), and in the primitive case h = 1 if m greater than or equal to m(0) where the constant m(0) depends only on t.
Let C be the binary narrow-sense BCH code of length n = (2(m) - 1)/h, where m is the order of 2 module n. Using characters of finite fields and a theorem of Well, and results of Vladut-Skorobogatov and Lang-Weil we prove that the code C is normal in the non-primitive case h > 1 if 2(m) greater than or equal to 4(2th)(4t+2), and in the primitive case h = 1 if m greater than or equal to m(0) where the constant m(0) depends only on t.