A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

DECIDABILITY PROBLEMS FOR UNARY OUTPUT SEQUENTIAL TRANSDUCERS




TekijätHARJU T, KLEIJN HCM

KustantajaELSEVIER SCIENCE BV

Julkaisuvuosi1991

Lehti:Discrete Applied Mathematics

Tietokannassa oleva lehden nimiDISCRETE APPLIED MATHEMATICS

Lehden akronyymiDISCRETE APPL MATH

Vuosikerta32

Numero2

Aloitussivu131

Lopetussivu140

Sivujen määrä10

ISSN0166-218X

DOIhttps://doi.org/10.1016/0166-218X(91)90096-F


Tiivistelmä
Ibarra has proved that the equivalence problem for unary output sequential transducers (nondeterministic and with accepting states) is undecidable. Here we apply this result to prove that one cannot decide whether a sequential transducer realizes a composition of morphisms and inverse morphisms. Next we translate Ibarra's result to generalized finite automata and among other things we prove that it is undecidable whether two generalized finite automata are equivalent when also the lengths of the computations are taken into consideration. Finally we show that in contrast to Ibarra's result the multiplicity equivalence problem for unary output sequential transducers is decidable.


Research Areas



Last updated on 2025-13-10 at 11:25