A1 Refereed original research article in a scientific journal

Fast Kinetics of Nucleotide Binding to Clostridium perfringens Family II Pyrophosphatase Containing CBS and DRTGG Domains




AuthorsJamsen J, Baykov AA, Lahti R

PublisherMAIK NAUKA/INTERPERIODICA/SPRINGER

Publication year2012

JournalБиохимия / Biochemistry

Journal name in sourceBIOCHEMISTRY-MOSCOW

Journal acronymBIOCHEMISTRY-MOSCOW+

Number in series2

Volume77

Issue2

First page 165

Last page170

Number of pages6

ISSN0006-2979

DOIhttps://doi.org/10.1134/S0006297912020071


Abstract
We earlier described CBS-pyrophosphatase of Moorella thermoacetica (mtCBS-PPase) as a novel phosphohydrolase that acquired a pair of nucleotide-binding CBS domains during evolution, thus endowing the protein with the capacity to be allosterically regulated by adenine nucleotides (J msen, J., Tuominen, H., Salminen, A., Belogurov, G. A., Magretova, N. N., Baykov, A. A., and Lahti, R. (2007) Biochem. J., 408, 327-333). We herein describe a more evolved type of CBS-pyrophosphatase from Clostridium perfringens (cpCBS-PPase) that additionally contains a DRTGG domain between the two CBS domains in the regulatory part. cpCBS-PPase retained the ability of mtCBS-PPase to be inhibited by micromolar concentrations of AMP and ADP and activated by ATP and was additionally activated by diadenosine polyphosphates (AP(n)A) with n > 2. Stopped-flow measurements using a fluorescent nucleotide analog, 2'(3')-O-(N-methylanthranoyl)-AMP, revealed that cpCBS-PPase interconverts through two different conformations with transit times on the millisecond scale upon nucleotide binding. The results suggest that the presence of the DRTGG domain affords greater flexibility to the regulatory part, allowing it to more rapidly undergo conformational changes in response to binding.



Last updated on 2024-26-11 at 14:40