Hierarchically Designed Bioactive Glassy Nanocoatings for the Growth of Faster and Uniformly Dense Apatite




Indranee Das, Samar K. Medda, Goutam De, Susanne Fagerlund, Leena Hupa, Mervi A. Puska, Pekka K. Vallittu

2015

Journal of the American Ceramic Society

98

8

2428

2437,

10

0002-7820

1551-2916

DOIhttps://doi.org/10.1111/jace.13626



Crack-free bioactive nanocoatings embedded with uniformly distributed silica-rich bioactive spherical aggregates were successfully prepared in situ by controlling the micellization of a SiO2–CaO–P2O5 sol using the tri-block copolymer P123 followed by dip-coating onto a bio-inert glass substrate and calcined. These hierarchically designed nanocoatings embedded with such bioactive glassy nanospheres (BGNS) enabled to induce the deposition of a densely populated, uniform, and well-developed needlelike crystalline carbonated hydroxyapatite coating reminiscence of the mineral phase of natural bone within a short immersion time in simulated body fluid. The BGNS nanocoatings also supported the growth and attachment of human gingival fibroblasts. The results suggest that these newly designed composite nanocoatings are noncytotoxic, capable of supporting rapid and homogeneous calcium phosphate deposition as well as subsequent crystallization, and likely to be promising candidates for inert glass reinforced bone implants.




Last updated on 2024-26-11 at 21:37