A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Teichmüller's problem in space




TekijätKlen R, Todorcevic V, Vuorinen M

KustantajaACADEMIC PRESS INC ELSEVIER SCIENCE

Julkaisuvuosi2017

JournalJournal of Mathematical Analysis and Applications

Tietokannassa oleva lehden nimiJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

Lehden akronyymiJ MATH ANAL APPL

Vuosikerta455

Numero1-2

Aloitussivu1297

Lopetussivu1316

Sivujen määrä20

ISSN0022-247X

DOIhttps://doi.org/10.1016/j.jmaa.2017.06.026


Tiivistelmä
Quasiconformal homeomorphisms of the whole space, onto itself normalized at one or two points are studied. In particular, the stability theory, the case when the maximal dilatation tends to 1, is in the focus. Our main result provides a spatial analogue of a classical result due to Teichmuller. Unlike Teichmuller's result, our bounds are explicit. Explicit bounds are based on two sharp well-known distortion results: the quasiconformal Schwarz lemma and the bound for linear dilatation. Moreover, Bernoulli type inequalities and asymptotically sharp bounds for special functions involving complete elliptic integrals are applied to simplify the computations. Finally, we discuss the behavior of the quasihyperbolic metric under quasiconformal maps and prove a sharp result for quasiconformal maps of R-n {0} onto itself. (C) 2017 Elsevier Inc. All rights reserved.



Last updated on 2024-26-11 at 19:24