A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
ON DOL SYSTEMS WITH IMMIGRATION
Tekijät: HONKALA J
Kustantaja: ELSEVIER SCIENCE BV
Julkaisuvuosi: 1993
Journal: Theoretical Computer Science
Tietokannassa oleva lehden nimi: THEORETICAL COMPUTER SCIENCE
Lehden akronyymi: THEOR COMPUT SCI
Vuosikerta: 120
Numero: 2
Aloitussivu: 229
Lopetussivu: 245
Sivujen määrä: 17
ISSN: 0304-3975
DOI: https://doi.org/10.1016/0304-3975(93)90289-6
Tiivistelmä
We study DOL systems with immigration. We show that sequence and growth equivalence are decidable. We establish regularity and decidability results concerning degrees of ambiguity. As a consequence of results about subword complexity, we show that regularity and omega-regularity are decidable for languages generated by growing systems.
We study DOL systems with immigration. We show that sequence and growth equivalence are decidable. We establish regularity and decidability results concerning degrees of ambiguity. As a consequence of results about subword complexity, we show that regularity and omega-regularity are decidable for languages generated by growing systems.