A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Abelian bordered factors and periodicity




TekijätCharlier E, Harju T, Puzynina S, Zamboni LQ

KustantajaAcademic Press LTD- Elsevier Science LTD

Julkaisuvuosi2016

JournalEuropean Journal of Combinatorics

Tietokannassa oleva lehden nimiEUROPEAN JOURNAL OF COMBINATORICS

Lehden akronyymiEur J Combin

Vuosikerta51

Aloitussivu407

Lopetussivu418

Sivujen määrä12

ISSN0195-6698

DOIhttps://doi.org/10.1016/j.ejc.2015.07.003


Tiivistelmä

A finite word u is said to be bordered if u has a proper prefix which is also a suffix of u, and unbordered otherwise. Ehrenfeucht and Silberger proved that an infinite word is purely periodic if and only if it contains only finitely many unbordered factors. We are interested in abelian and weak abelian analogues of this result; namely, we investigate the following question(s): Let w be an infinite word such that all sufficiently long factors are (weakly) abelian bordered; is w (weakly) abelian periodic? In the process we answer a question of Avgustinovich et al. concerning the abelian critical factorization theorem. (C) 2015 Elsevier Ltd. All rights reserved.



Last updated on 2024-26-11 at 23:52