A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Real zeros of holomorphic Hecke cusp forms and sieving short intervals
Tekijät: Kaisa Matomäki
Kustantaja: European Mathematical Society Publishing House
Julkaisuvuosi: 2016
Journal: Journal of the European Mathematical Society
Vuosikerta: 18
Numero: 1
Aloitussivu: 123
Lopetussivu: 146
Sivujen määrä: 24
ISSN: 1435-9855
DOI: https://doi.org/10.4171/JEMS/585
Abstract. We study so-called real zeros of holomorphic Hecke cusp forms,
that is zeros on three geodesic segments on which the cusp form (or a multiple
of it) takes real values. Ghosh and Sarnak, who were the first to study this
problem, showed that existence of many such zeros follows if many short intervals
contain numbers whose all prime factors belong to a certain subset of
the primes. We prove new results concerning this sieving problem which leads
to improved lower bounds for the number of real zeros.
Ladattava julkaisu This is an electronic reprint of the original article. |