A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Real zeros of holomorphic Hecke cusp forms and sieving short intervals




TekijätKaisa Matomäki

KustantajaEuropean Mathematical Society Publishing House

Julkaisuvuosi2016

JournalJournal of the European Mathematical Society

Vuosikerta18

Numero1

Aloitussivu123

Lopetussivu146

Sivujen määrä24

ISSN1435-9855

DOIhttps://doi.org/10.4171/JEMS/585


Tiivistelmä

Abstract. We study so-called real zeros of holomorphic Hecke cusp forms,

that is zeros on three geodesic segments on which the cusp form (or a multiple

of it) takes real values. Ghosh and Sarnak, who were the first to study this

problem, showed that existence of many such zeros follows if many short intervals

contain numbers whose all prime factors belong to a certain subset of

the primes. We prove new results concerning this sieving problem which leads

to improved lower bounds for the number of real zeros.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:39