Complexity of Conjugacy, Factoring and Embedding for Countable Sofic Shifts of Rank 2




Salo V, Torma I

Teijiro Isokawa,Katsunobu Imai, Nobuyuki Matsui,Ferdinand Peper,Hiroshi Umeo

AUTOMATA

PublisherSPRINGER-VERLAG NEW YORK, MS INGRID CUNNINGHAM, 175 FIFTH AVE, NEW YORK, NY 10010 USA

2015

Lecture Notes in Computer Science

Cellular automata and discrete complex systems

CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2014)

LECT NOTES COMPUT SC

Lecture notes in computer science

8996

121

134

14

978-3-319-18812-6

0302-9743

DOIhttps://doi.org/10.1007/978-3-319-18812-6_10



In this article, we study countable sofic shifts of Cantor-Bendixson rank at most 2. We prove that their conjugacy problem is complete for GI, the complexity class of graph isomorphism, and that the existence problems of block maps, factor maps and embeddings are NP-complete.




Last updated on 2024-26-11 at 21:28