A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Black holes in active galactic nuclei
Tekijät: Valtonen MJ, Mikkola S, Merritt D, Gopakumar A, Lehto HJ, Hyvonen T, Rampadarath H, Saunders R, Basta M, Hudec R
Toimittaja: Klioner SA, Seidelmann PK, Soffel MH
Konferenssin vakiintunut nimi: Symposium of the International Astronomical Union
Julkaisuvuosi: 2010
Journal: Proceedings of the International Astronomical Union
Kokoomateoksen nimi: Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis
Tietokannassa oleva lehden nimi: RELATIVITY IN FUNDAMENTAL ASTRONOMY: DYNAMICS, REFERENCE FRAMES, AND DATA ANALYSIS
Lehden akronyymi: IAU SYMP P SERIES
Vuosikerta: 5
Numero: 261
Aloitussivu: 260
Lopetussivu: 268
Sivujen määrä: 9
ISBN: 978-0-521-76481-0
ISSN: 1743-9213
DOI: https://doi.org/10.1017/S1743921309990482
Supermassive black holes are common in centers of galaxies. Among the active galaxies, quasars are the most extreme, and their black hole masses range as high as to 6.10(10)M(circle dot) Binary black holes are of special interest but so far OJ287 is the only confirmed case with known orbital elements. In 03287, the binary nature is confirmed by periodic radiation pulses. The period is twelve years with two pulses per period. The last four pulses have been correctly predicted with the accuracy of few weeks, the latest in 2007 with the accuracy of one day. This accuracy is high enough that one may test the higher order terms in the Post Newtonian approximation to General Relativity. The precession rate per period is 39 degrees.1 +/- 0 degrees.1, by far the largest rate in any known binary, and the (1.83 +/- 0.01).10(10) M(circle dot) primary is among the dozen biggest black holes known. We will discuss the various Post Newtonian terms and their effect on the orbit solution. The over 100 year data base of optical variations in OJ287 puts limits on these terms and thus tests the ability of Einstein's General Relativity to describe, for the first time, dynamic binary black hole spacetime in the strong field regime. The quadrupole-moment contributions to the equations of motion allows us to constrain the 'no-hair' parameter to be 1.0 +/- 0.3 which supports the black hole no-hair theorem within the achievable precision.