A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On palindromic factorization of words.
Tekijät: A Frid, S Puzynina, L Q Zamboni
Julkaisuvuosi: 2013
Journal: Advances in Applied Mathematics
Numero sarjassa: 5
Vuosikerta: 50
Numero: 5
Aloitussivu: 737
Lopetussivu: 748
Sivujen määrä: 12
ISSN: 0196-8858
DOI: https://doi.org/10.1016/j.aam.2013.01.002
Tiivistelmä
Given a finite word u, we define its palindromic length |u|_{pal} to be the least number n such that u=v_1v_2... v_n with each v_i a palindrome. We address the following open question: Does there exist an infinite non ultimately periodic word w and a positive integer P such that |u|_{pal}
Given a finite word u, we define its palindromic length |u|_{pal} to be the least number n such that u=v_1v_2... v_n with each v_i a palindrome. We address the following open question: Does there exist an infinite non ultimately periodic word w and a positive integer P such that |u|_{pal}
P. In particular, the result holds for all the k-power-free words and for the Sierpinski word.