A1 Refereed original research article in a scientific journal
DIOPHANTINE APPROXIMATION BY PRIMES
Authors: Matomäki Kaisa
Publisher: CAMBRIDGE UNIV PRESS
Publication year: 2010
Journal: Glasgow Mathematical Journal
Journal name in source: GLASGOW MATHEMATICAL JOURNAL
Journal acronym: GLASGOW MATH J
Volume: 52
First page : 87
Last page: 106
Number of pages: 20
ISSN: 0017-0895
DOI: https://doi.org/10.1017/S0017089509990176
Abstract
We show that whenever delta > 0 and constants lambda(i) satisfy some necessary conditions. there are infinitely many prime triples p(1) p(2), p(3) sat satisfying the inequality |lambda(0) + lambda(1)p(1) + lambda(2)p(2) + lambda(3)p(3)| < (maxp(j))(-2/9+delta). The proof uses Davenport-Heilbronn adaption of the circle method together with a vector sieve method.
We show that whenever delta > 0 and constants lambda(i) satisfy some necessary conditions. there are infinitely many prime triples p(1) p(2), p(3) sat satisfying the inequality |lambda(0) + lambda(1)p(1) + lambda(2)p(2) + lambda(3)p(3)| < (maxp(j))(-2/9+delta). The proof uses Davenport-Heilbronn adaption of the circle method together with a vector sieve method.