A1 Refereed original research article in a scientific journal
Novel perspectives on the transcytotic route in osteoclasts
Authors: Hirvonen MJ, Fagerlund K, Lakkakorpi P, Väänänen HK, Mulari MTK
Publisher: Nature
Publication year: 2013
Journal: BoneKEy Reports
Article number: 306
Volume: 2
First page : 306
ISSN: 2047-6396
DOI: https://doi.org/10.1038/bonekey.2013.40
Abstract
We analyzed the characteristics of degraded bone matrix-delivering vesicles along the transcytotic route from the ruffled border to the functional secretory domain (FSD) in bone-penetrating osteoclasts. Cells of rat or human origin were cultured on bovine bone slices and analyzed via confocal microscopy. Helix pomatia lectin binding indicated that transcytotic vesicles expose aberrant N-acetylgalactosamine glycoconjugates, which is associated with a poor prognosis for a range of metastasizing human adenocarcinomas. Transcytotic vesicles fuse with the autophagosomal compartments and represent raft concentrates. Furthermore, the results of a vertical vesicle analysis suggest that multiple vesicle populations arise from the ruffled border and that some of these vesicles undergo a maturation process along the transcytotic route. Finally, our data suggest that the targeting of these membrane pathways may be determined by a novel F-actin-containing and FSD-circumscribing molecular barrier.
We analyzed the characteristics of degraded bone matrix-delivering vesicles along the transcytotic route from the ruffled border to the functional secretory domain (FSD) in bone-penetrating osteoclasts. Cells of rat or human origin were cultured on bovine bone slices and analyzed via confocal microscopy. Helix pomatia lectin binding indicated that transcytotic vesicles expose aberrant N-acetylgalactosamine glycoconjugates, which is associated with a poor prognosis for a range of metastasizing human adenocarcinomas. Transcytotic vesicles fuse with the autophagosomal compartments and represent raft concentrates. Furthermore, the results of a vertical vesicle analysis suggest that multiple vesicle populations arise from the ruffled border and that some of these vesicles undergo a maturation process along the transcytotic route. Finally, our data suggest that the targeting of these membrane pathways may be determined by a novel F-actin-containing and FSD-circumscribing molecular barrier.