A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Improved upper bounds on binary identifying codes
Tekijät: Exoo G, Laihonen T, Ranto S
Kustantaja: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Julkaisuvuosi: 2007
Journal: IEEE Transactions on Information Theory
Tietokannassa oleva lehden nimi: IEEE TRANSACTIONS ON INFORMATION THEORY
Lehden akronyymi: IEEE T INFORM THEORY
Vuosikerta: 53
Numero: 11
Aloitussivu: 4255
Lopetussivu: 4260
Sivujen määrä: 6
ISSN: 0018-9448
DOI: https://doi.org/10.1109/TIT.2007.907434
Tiivistelmä
In binary Hamming spaces, we construct new 1-identifying codes from 2-fold 1-coverings that are 1-identifying. We improve on previously known upper bounds for the cardinalities of I-identifying codes of many lengths when n >= 10. We construct t-identifying codes using the direct sum of t I-identifying codes. This solves partly an open problem posed by Blass, Honkala, and Litsyn in 2001. We also prove a general result concerning the direct sum of a t-identifying code with the whole space of any dimension.
In binary Hamming spaces, we construct new 1-identifying codes from 2-fold 1-coverings that are 1-identifying. We improve on previously known upper bounds for the cardinalities of I-identifying codes of many lengths when n >= 10. We construct t-identifying codes using the direct sum of t I-identifying codes. This solves partly an open problem posed by Blass, Honkala, and Litsyn in 2001. We also prove a general result concerning the direct sum of a t-identifying code with the whole space of any dimension.