A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

An Excursion Through Quantitative Model Refinement




TekijätSepinoud Azimi, Eugen Czeizler, Cristian Gratie, Diana-Elena Gratie, Bogdan Iancu, Nebiat Ibssa, Ion Petre, Vladimir Rogojin, Tolou Shadbahr, Fatemeh Shokri

ToimittajaGrzegorz Rozenberg,Arto Salomaa,José M.Sempere,Claudio Zandron

Konferenssin vakiintunut nimiInternational Conference on Membrane Computing

KustantajaSpringer

Julkaisuvuosi2015

Kokoomateoksen nimiMembrane computing

Sarjan nimiLecture Notes in Computer Science

Vuosikerta9504

Aloitussivu25

Lopetussivu47

Sivujen määrä23

ISBN978-3-319-28474-3

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-319-28475-0_3


Tiivistelmä

There is growing interest in creating large-scale computational models for biological process. One of the challenges in such a project is to fit and validate larger and larger models, a process that requires more high-quality experimental data and more computational effort as the size of the model grows. Quantitative model refinement is a recently proposed model construction technique addressing this challenge. It proposes to create a model in an iterative fashion by adding details to its species, and to fix the numerical setup in a way that guarantees to preserve the fit and validation of the model. In this survey we make an excursion through quantitative model refinement – this includes introducing the concept of quantitative model refinement for reaction-based models, for rule-based models, for Petri nets and for guarded command language models, and to illustrate it on three case studies (the heat shock response, the ErbB signaling pathway, and the self-assembly of intermediate filaments).




Last updated on 2024-26-11 at 22:34