A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Minimal and almost minimal reaction systems




TekijätArto Salomaa

KustantajaSPRINGER

Julkaisuvuosi2013

JournalNatural Computing

Tietokannassa oleva lehden nimiNATURAL COMPUTING

Lehden akronyymiNAT COMPUT

Numero sarjassa3

Vuosikerta12

Numero3

Aloitussivu369

Lopetussivu376

Sivujen määrä8

ISSN1567-7818

DOIhttps://doi.org/10.1007/s11047-013-9372-y


Tiivistelmä

In reaction systems introduced by Ehrenfeucht and Rozenberg the number of resources is, by definition, at least 2. If it is exactly 2, the system is referred to as minimal. We compare minimal reaction systems with almost minimal ones, where the number of resources equals 3. The difference turns out to be huge. While many central problems for minimal systems are of low polynomial complexity, the same problems in the almost minimal case are NP- or co-NP-complete. The situation resembles the difference between 2-SAT and 3-SAT, also from the point of view of techniques used. We also compare maximal sequence lengths obtainable in the two cases. We are concerned only with the most simple variant of reaction systems.




Last updated on 2024-26-11 at 17:18