A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Border correlation of binary words




TekijätHarju T, Nowotka D

KustantajaACADEMIC PRESS INC ELSEVIER SCIENCE

Julkaisuvuosi2004

Lehti:Journal of Combinatorial Theory, Series A

Tietokannassa oleva lehden nimiJOURNAL OF COMBINATORIAL THEORY SERIES A

Lehden akronyymiJ COMB THEORY A

Vuosikerta108

Numero2

Aloitussivu331

Lopetussivu341

Sivujen määrä11

ISSN0097-3165

DOIhttps://doi.org/10.1016/j.jcta.2004.07.009


Tiivistelmä
The border correlation function beta: A* --> A*, for A = {a, b}, specifies which conjugates (cyclic shifts) of a given word w of length n are bordered, in other words, beta(w) = c(0)c(1)... c(n- 1), where c(i) = a or b according to whether the ith cyclic shift sigma(i)(w) of w is unbordered orbordered. Except for some special cases, no binary word w has two consecutive unbordered conjugates (sigma(i)(w) and sigma(i+1) (w)). We show that this is optimal: in every cyclically overlap-free word every other conjugate is unbordered. We also study the relationship between unbordered conjugates and critical points, as well as, the dynamic system given by iterating the function beta. We prove that, for each word w of length n, the sequence w, beta(w), beta(2)(w),... terminates either in b(n) or in the cycle of conjugates of the word ab(k)ab(k+l) for n = 2k + 3. (C) 2004 Elsevier Inc. All rights reserved.


Research Areas



Last updated on 2025-14-10 at 09:47