A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Watching Systems in the King Grid




TekijätAuger D, Honkala I

KustantajaSPRINGER JAPAN KK

Julkaisuvuosi2013

JournalGraphs and Combinatorics

Tietokannassa oleva lehden nimiGRAPHS AND COMBINATORICS

Lehden akronyymiGRAPH COMBINATOR

Numero sarjassa3

Vuosikerta29

Numero3

Aloitussivu333

Lopetussivu347

Sivujen määrä15

ISSN0911-0119

DOIhttps://doi.org/10.1007/s00373-011-1124-0


Tiivistelmä
We consider the infinite King grid where we investigate properties of watching systems, an extension of the notion of identifying code recently introduced by Auger et al. (Discret. Appl. Math., 2011). The latter were extensively studied in the infinite King grid and we compare our results with those holding for (r, a parts per thousand currency signa"")-identifying codes. We prove that for r = 1 and a"" = 1, the minimal density of an identifying code, known to be also holds for watching systems; however, when r is large we give an asymptotic equivalence of the optimal density of watching systems which is much better than identifying codes'. Turning to the case r = 1 and a"" a parts per thousand yen 1, we prove that in a certain sense when a"" a parts per thousand yen 6 the best watching systems in the infinite King grid are trivial, but that this is not the case when a"" a parts per thousand currency sign 4.


Research Areas



Last updated on 2024-26-11 at 21:55