A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Full and Partial Agonism of Ionotropic Glutamate Receptors Indicated by Molecular Dynamics Simulations




TekijätPostila PA, Ylilauri M, Pentikainen OT

KustantajaAMER CHEMICAL SOC

Julkaisuvuosi2011

JournalJournal of Chemical Information and Modeling

Tietokannassa oleva lehden nimiJOURNAL OF CHEMICAL INFORMATION AND MODELING

Lehden akronyymiJ CHEM INF MODEL

Vuosikerta51

Numero5

Aloitussivu1037

Lopetussivu1047

Sivujen määrä11

ISSN1549-9596

DOIhttps://doi.org/10.1021/ci2000055


Tiivistelmä
Ionotropic glutamate receptors (iGluRs) are synaptic proteins that facilitate signal transmission in the central nervous system. Extracellular iGluR cleft closure is linked to receptor activation; however, the mechanism underlying partial agonism is not entirely understood. Full agonists close the bilobed ligand-binding domain (LBD), while antagonists prevent closure; the transmembrane ion channel either opens or stays closed, respectively. Although some bulky partial agonists produce intermediate iGluR-LBD closure, the available crystal structures also imply that the cleft can be shut with certain partial agonists. Recently, we have shown that the iGluR-LBD closure stage can be recreated by inserting a ligand into the closed cleft and simulating the ligand-receptor complex with molecular dynamics. Our simulations indicate that partial agonist binding does not necessarily prevent full receptor cleft closure; instead, it destabilizes cleft closure. Interdomain hydrogen bonds were studied thoroughly, and one hydrogen bond, in particular, was consistently disrupted by bound partial agonists. Accordingly, the simulation protocol presented here can be used to categorize compounds in silico as partial or full agonists for iGluRs.



Last updated on 2024-26-11 at 11:40