A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Hirota's method and the search for integrable partial difference equations. 1. Equations on a 3 x 3 stencil




TekijätJarmo Hietarinta, Da-Jun Zhang

KustantajaTAYLOR & FRANCIS LTD

Julkaisuvuosi2013

JournalJournal of Difference Equations and Applications

Tietokannassa oleva lehden nimiJOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS

Lehden akronyymiJ DIFFER EQU APPL

Numero sarjassa8

Vuosikerta19

Numero8

Aloitussivu1292

Lopetussivu1316

Sivujen määrä25

ISSN1023-6198

DOIhttps://doi.org/10.1080/10236198.2012.740026


Tiivistelmä
Hirota's bilinear method (direct method') has been very effective for constructing soliton solutions to many integrable equations. The construction of one-soliton solution (1SS) and two-soliton solution (2SS) is possible even for non-integrable bilinear equations, but the existence of a generic three-soliton solution (3SS) imposes severe constraints and is in fact equivalent to integrability. This property has been used before in searching for integrable partial differential equations, and in this paper we apply it to two-dimensional (2D) partial difference equations defined on a 3x3 stencil. We also discuss how the obtained equations are related to projections and limits of the 3D master equations of Hirota and Miwa, and find that sometimes a singular limit is needed.



Last updated on 2024-26-11 at 16:28