Characterization of the variable exponent Sobolev norm without derivatives




Peter Hästö, Ana Margarida Ribeiro

PublisherWORLD SCIENTIFIC PUBL CO PTE LTD

2017

Communications in Contemporary Mathematics

COMMUNICATIONS IN CONTEMPORARY MATHEMATICS

COMMUN CONTEMP MATH

ARTN 1650022

19

3

13

0219-1997

1793-6683

DOIhttps://doi.org/10.1142/S021919971650022X



The norm in classical Sobolev spaces can be expressed as a difference quotient. This expression can be used to generalize the space to the fractional smoothness case. Since the difference quotient is based on shifting the function, it cannot be generalized to the variable exponent case. In its place, we introduce a smoothed difference quotient and show that it can be used to characterize the variable exponent Sobolev space.



Last updated on 2024-26-11 at 17:46