A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On Markov's undecidability theorem for integer matrices




TekijätHalava V, Harju T

KustantajaSPRINGER

Julkaisuvuosi2007

Lehti:Semigroup Forum

Tietokannassa oleva lehden nimiSEMIGROUP FORUM

Lehden akronyymiSEMIGROUP FORUM

Vuosikerta75

Numero1

Aloitussivu173

Lopetussivu180

Sivujen määrä8

ISSN0037-1912

DOIhttps://doi.org/10.1007/s00233-007-0714-x


Tiivistelmä
We study a problem considered originally by A. Markov in 1947: Given two finitely generated matrix semigroups, determine whether or not they contain a common element. This problem was proved undecidable by Markov for 4 x 4 matrices, even in a very restrict form, and for 3 x 3 matrices by Krom in 1981. Here we give a new proof in the 3 x 3 case which gives undecidability in ail almost as restricted form as the result of Markov.


Research Areas



Last updated on 2025-14-10 at 10:00