A1 Refereed original research article in a scientific journal
Cancer Death Risk Related to Radiation Exposure from Computed Tomography Scanning Among Testicular Cancer Patients
Authors: Eeva Salminen, Hannele Niiniviita, Hannu Järvinen, Sirpa Heinävaara
Publisher: INT INST ANTICANCER RESEARCH
Publication year: 2017
Journal: Anticancer Research
Journal name in source: ANTICANCER RESEARCH
Journal acronym: ANTICANCER RES
Volume: 37
Issue: 2
First page : 831
Last page: 834
Number of pages: 4
ISSN: 0250-7005
eISSN: 1791-7530
DOI: https://doi.org/10.21873/anticanres.11385
Abstract
Background: A study of the computed tomography (CT) imaging related effective doses and radiation-related cancer death risk. Patients and Methods: Estimate effective doses were computed from CT scans of testicular cancer patients treated and followed-up in Turku University Hospital, South Western Finland. Association between effective doses from follow-up CT scans and radiation-induced cancer death was examined using United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2008 formula. Results: Mean effective dose per CT abdomen was 9.32 (standard deviation, SD 3.89) mSv and for whole-body CT it was 14.24 (SD 6.84) mSv. During follow-up of 6 years, the patients were estimated to undergo 12 to 14 abdominal/whole-body CTs and the corresponding risk estimates were 0.11 and 1.14, respectively. The risk of estimated radiation-induced cancer deaths (RICD in %) computed for mean effective doses was lower in patients diagnosed at older age, being 0.61 for 10-19 years age and 0.04 for 40-49 years age at the diagnosis. Conclusion: Patient radiation exposure in CT imaging is associated with the type of CT device and imaging protocols, which should be periodically updated and reviewed to minimize individual exposure. Using the UNSCEAR modelling 2 % risk for radiation related cancer death was attributed to diagnostic exposure of study patients. Age at the diagnosis was associated with CT imaging related radiation exposure. The highest exposure was estimated to the youngest patients.
Background: A study of the computed tomography (CT) imaging related effective doses and radiation-related cancer death risk. Patients and Methods: Estimate effective doses were computed from CT scans of testicular cancer patients treated and followed-up in Turku University Hospital, South Western Finland. Association between effective doses from follow-up CT scans and radiation-induced cancer death was examined using United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2008 formula. Results: Mean effective dose per CT abdomen was 9.32 (standard deviation, SD 3.89) mSv and for whole-body CT it was 14.24 (SD 6.84) mSv. During follow-up of 6 years, the patients were estimated to undergo 12 to 14 abdominal/whole-body CTs and the corresponding risk estimates were 0.11 and 1.14, respectively. The risk of estimated radiation-induced cancer deaths (RICD in %) computed for mean effective doses was lower in patients diagnosed at older age, being 0.61 for 10-19 years age and 0.04 for 40-49 years age at the diagnosis. Conclusion: Patient radiation exposure in CT imaging is associated with the type of CT device and imaging protocols, which should be periodically updated and reviewed to minimize individual exposure. Using the UNSCEAR modelling 2 % risk for radiation related cancer death was attributed to diagnostic exposure of study patients. Age at the diagnosis was associated with CT imaging related radiation exposure. The highest exposure was estimated to the youngest patients.